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Matrix-matrix multiplication is normally camputed using ane of the
BLAS or a reinvention of parnt of the BLAS. Unfortunately, the BLAS
were designed with small matrices in mind. When huge, well-condi-
tioned matrices are multiplied together, the BLAS perform like the
blahs, even on vector machines. For matrices where the coefficients are
well conditioned. Winograd's variant of Strassen’s algorithm offers
same relief, but is rarely available in a quality form on most computers.
We reconsider this method and offer a highly portable solution based
on the Level 3 BLAS interface.. © 1994 Academic Press, Inc.

1. PRELIMINARIES

Maftrix-matrix multiplication is a very basic computer
operation. A very clear description of how to do it can be
found in many textbooks, e.g., [1]. Suppose we want to
multiply two matrices

AMxK and B:Kx N,
where the elements of A and B are real or complex numbers
and M, K, and N are natural numbers.
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Strassen’s method recursively works with sets of 2x2
submatrices to form the product using seven matrix multi-
plications instead of the obvious eight. This is not very dif-
ferent from standard multilevel methods [ 7] used routinely
to solve partial differential equations. Strictly speaking, we

compute
i:All Al2:||:Bll Blz:l_____[cll CIZ:I
AZI AZZ BQI B22 CZI C22

using the following algorithm (Strassen—-Winograd):

Si=4,+4, M, =5,5 T'=M+M,
S,=8,-4,, M,=4,8B, T,=T,+M,
S;=A,—4y M;=4,,8,

Si=A—-5, M,=5:5; n
Ss=B,—B,, M;=55; Cp=M,+M,
S¢=B1—8s M¢=5,B: Cpo=T+M+M,
S;=Bp—B,; M;=A4,5 C,=T,-M,
Sg=8;— 8, Coy=T,+ M;

(see [12, 137]). This is not a very convenient way to define
this algorithm, but it is the standard textbook definition.
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Unlike textbook exercises, we do not require square
matrices nor restrict the dimensions to 2* for some natural
number .

While there are only seven matrix—matrix multiplications
and 15 matrix-matrix additions and subtractions in (1),
there is no hint as to how to implement this efficiently. The
crossover point, mindim, when Strassen—Winograd is more
efficient than the classical algorithm, can be computed. 1t
depends on the difference in cost between performing an
arithmetic operation and loading or storing a number
in memory. When arithmetic is relatively expensive,
mindim =32 is common. When arithmetic is less expensive
relatively, 96 < mindim < 256 is common.

Extra storage is required to hold sums of quadrants of A
and B. Since the shape of C may be quite different from these
two matrices, extra storage of approximately the same size
as the quadrants is required. Hence, any extra storage
required for the intermediate results may be a considerable
percentage of the entire memory of a computer.

" The obvious approaches to implementing Strassen—
Winograd for general sized matrices require either padding
the matrices with extra zero rows and/or columns or doing
a number of rank-one updates that are slow and produce
spaghetti code.

In theory, while the classical method can be implemented
using techniques which do the inner products as accurately
as possible, the added cost of doing this step usuvally
eliminates 1t from real programs. Simple examples exist
where, due to the unnatural submatrix additions, variants of
Strassen’s algorithm obtain the wrong answer while the
classical method obtains the right answer. However, for
many problems, due to the reduction of arithmetic opera-
tions, Strassen~Winograd has better roundoff properties
than the classical method. Hence, for matrices A and B, we
assume the coefficients are “well conditioned” enough so
that both methods obtain acceptable answers. In other
words, caveat emptor for either class of matrix-matrix mul-
tiplication in real codes. For a more complete discussion
of this issue see [3,8], along with their references. An
interesting application to solving Iinear systems of equations
is contained in [1, 4].

This paper is actually interested in a highly portable Level
3 BLAS [6] interface for computing

Cea-op(d)op(B)+f-C, (2)

where

X,

X transpose,

X conjugate transpose,
X conjugate,

op(X}=

and

op(A): Mx K, op(B): KxN, C:MxN,
Most of the discussion will ignore the conjugate and
transpose cases, but the implementation is that of (2).

This paper addresses how Strassen—Winograd can be
implemented portably with a mimimum of extra storage, no
rank-one updates for general matrices, and whatever library
the user wishes to use on a particular machine. In Section 2,
one solution is constructed. In Section 3, a gpecial case of
classical matrix—matrix multiplication for complex matrices
is discussed. In Section 4, a hybrid matrix—matrix multi-
plication is constructed which minimizes communication
along with the justification for its existence. In Section 5,
numerical experiments are presented for both the serial and
paraliel cases.

2, SERIAL COMPUTER IMPLEMENTATION

In this section, we describe a practical and highly efficient
implementation of (1) for serial machines. This includes the
flow of computation, how odd sized matrices are handled,
and the memory requirements,

Each one of the temporary variables §;, M,, and T,in (1)
can be considered a register. Hence, register optimization
techniques can be applied based on the directed data
flow graph. Each temporary variable is stored in an
appropriately sized register and accessed only as needed.
Clearly the dimensions of each intermediate result must be
considered. Further, when A/, K, or N is odd, there is
considerable flexibility in choosing the dimensions of the
qguadrants (in fact, using irregular shaped guadrants is
better than regular ones}.

Since we are computing C = 4B, parts of C can be freely
used as the registers or work areas. The data for each matrix
is assumed to be stored in column order as a single data area
{ie, Fortran style), rather than as a collection of row
vectors with a column vector of pointers to the rows
(i.e., C style). Hence, the number of elements of any work
areas can be bound by a single number. As will be shown,
only two large work areas, W, and Wy, are needed.
When M is odd, an additional short vector of length N/2 is
required. The size of each large work area is

Mmax(K, N+ M+ max(X, N)+4
;VMK: 4 L]

KN+ K+ N+4
WKN.L 4 JJ

where the floor symbol refers to rounding down to the
nearest natural number. The total amount of extra storage
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Step [ Wux | Cun Ciz Cni Cip | Wk | Operation
1 Sy Bjy; — By
2. 53 All — A21
3. M-l 5357
4.5 Aa+ Az
5. S5 By - By
6. MS 5155
7. S By — 55
8. |5 51— An
9. M,y 525
10.{ 5, An— 5
11, Mg S4B3;
12. T3 M5 + Ms
13. | M, Ay By
14. T M+ M,
15. Cr2 T+ T
16. T T+ M,
17. Ss Sg — By
18. M A3y 5
19. C21 T2 — M,
20. Caa T+ Ms
21. M; A2 B
22, Cn M; + M3
FIG. 1. WINOS: Implementation of Winograd variant of Strassen’s
algorithm.

required over all levels (including the possible additional
short vector) 1s bounded by

LM max(K, N)+ KN] +

+3[M + max(K, N)+ K+ 3N] +32. (3)
In addition, when § 0 or € overlaps with A or Bin (2), an
additional M ¥ storage is required to hold 4B before adding
that to AC. Thus, when K=M =N in {3), the auxiliary
storage requirements are approximately c¢N?/3, where
ce{2,5}.

The actual order of operations and location of inter-
mediate and final results for our serial computer code is in
Fig. 1. There are two special cases of note.

s Odd M andfor N. Conceptually we duplicate 4’s odd
middle row or B’s odd middle column. The product would

then have a duplicated middle row or column accordingly.
Letting the ouiput quadrants overlap by a row {column)
climinates the duplicated row {column) produced from
conceptual A and B. Conceptual 4 and B are used in the
recursion.

¢ 0Odd K. Conceptually we duplicate B’s odd middle row
and insert a column of zeroes after 4’s odd middie column.
In each operation involving 4, or 4,,, the first column is
either omitted {because it is zero) or it is handled as a virtual
column of zeroes.

For example, consider the product of two 3 x 3 matrices:
|

1
1

1
1{=
1 1

by =

3
2
1

b b =
Lo B NS B oS
[om N o B« S
oo WL

3
3
6

Conceptually, we use dimensions divisible by two:

T1o01793221 65573 65 3
12022221 9885=> 985
120222211 { 9885

1096
1203]J1111 10996

Actual A and B provide easy access to conceptual 4 and
B. For typical problems, the total elimination of rank one
updates and matrix—vector operations more than compen-
sates for the duplication of rows and/or columns. In all
cases, the output matrix C is divided into four, perhaps
unequal, quadrants as

s C,: MRx NR, where MR=[ M/2)and NR=[ N/2']
s Oyt MR NT, where NT=[ N/27]

s Cop: MT x NR, where MT=[ M/27

» Cyy: MT X NT,

where the ceiling symbol refers to rounding up to the
nearest natural number.

Each intermediate result is computed in dimensions just
sufficient to fill dependent quadrants of C. Consider the case
of odd M : a single storage conflict arises within C as M ; and

rStep Array | Step | Function
r 4, S (a} [ I K is odd, then copy first colummn of Az; into Wk .
(b) | Complete 5.
10. A (a) | If K is odd, then pretend first column of A3; = 0 in Warg .
(b} | Complete Sy.
11. M, {a) | If M is odd, then save first row of My.
{b) | Calculate most of Mg.
(c) | Complete Mg using (a) based on M odd or not.
21, M; {a) | Calculate Mz using an index shift.

FIG. 2. Modifications to avoid corruption.
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TABLEI
First Letter of Each Routine

Letter Data type
c Single presicion complex
d Double precision real
5 Single precision real
z Double precision complex

M, are stored in the right half of C and both require MR
rows. A single row copy resolves this conflict (see Fig. 2). An
algorithmic revision transforms the row copy into a column
{stride one) copy. Unfortunately, this introduced a number
of unpleasant side effects elsewhere in the algorithm, so it
was not implemented.

Conceptual 4 and B are of size 2MRx2KR and
2KR % 2NR, respectively. The first MR rows of conceptual
A come from the first M R rows of actual 4, and the last MR
rows of conceptual A, from the last MR of actual A4
(similarly, for KR and NR). Hence the duplication of the
odd rows and columns is indeed free.

Duplication of the odd row and column of the common
dimension, K, would corrupt the inner products. Simply by
taking the dupiicated odd column of A4 to be zero in 4, and
A, avoids corrupting the inner products. Hence, trivial
adjustments are needed in only the four places where 4,
and A,, are used: S,, S,, M;, and M, (see Fig. 2).

The benefits of this duplication method are speed and
simplicity. The solution involves no rank one updates and
no matrix—vector operations to deal with odd K, M, or N.
The code follows a virtually straight path from top to
bottom for all M, K, and N.

The code is organized into four major routines. Each one
takes its first letter from Table I. There is actuaily only one
copy of each routine; they are each compiled with a different
compiler definition for floating point to obtain the correct
name and compilation. The data types, subroutine names;
and mindim are ail defined using macros. This reduces the
cost and chance of errors should any of these routines need
to be modified at some later date.

TABLEII

Major Operation Macros

BLAS/
Macro LAPACK/ IBM Complex
name Cray SciLib ~ ESSL NAG only Orperation
YCOPY _ropy _capy  _fObeffigff — y=x
YAXPY _axpy _axpy _f06ech gcf — r=ax+y
VYAX _pax?® _yax  _fO6fdffhdf — y=gx
MATMUL  _gemm _gemul _fO6yafizaf _gemuid® C=op(A)op(B)
MATADD _ geadd” _geadd _f06ctffewf — C=op(A)+ op(B)
MATSUB _gesub® _gesub  _fO6etfiowf — C=op(A)— op(B)

“ Provided as part of a set of extended BLAS routines.

The actual recursive Strassen-Winograd routine, which is
not meant to be called directly by a user, is _winos, where
one of the letters in Table I is substituted for the “_” symbol.
The user actually calls _gemmw, which does error checking,
memory allocation {if necessary), calls _winos, and com-
pletes the calculation of (2). Alternately, the user calls
_gemmwb, which has the exact same arguments as the
routine _gemmm in the Level-3 BLAS. A special version of the
standard Level 3 BLAS routines cgemm and zgemm is
provided as _gemui3 (see Section 3).

The three major routines call a collection of Level 1 and
Level 3 BLAS routines to do the bulk of the computation.
The code is flexible enough that by modifving the macro
definitions in one header file, essentially any library can be
substituted for the default ones, In this manner, it is trivial
to make the code work with the BLAS, Cray Scientific
Library [9], ESSL [10], NAG [11], or any other library
the user chooses. We used the BLAS distributed with
LAPACK [2]. A list of the macros and the routines that are
actually called is contained in Table IL

Some of the operations required by Strassen-Winograd
{e.g., op(A)+ap(B)) are not part of the Level-3 BLAS.
Further, Fortran-90 does not provide adequate capability
for using transposes without copying the data. Hence, an
additional collection of routines (in both Fortran-77 and
Fortran-90 formats) are provided for people who need to
use a library without this capability.

Our approach leads to a very clean implementation that
supports many numerical libraries on a variety of platforms.
Further, the numerical results in Section 5 demonstrate that
we are competitive with hand tuned codes on various
machines.

3. COMPLEX STRASSEN-WINOGRAD

Provided with _gemmw is a specialized version of the
classical matrix multiplication algorithm for complex
matrices. Let P, @, R, and S be real matrices. A well-known
trick [1] calculates

(P+Qi)-(R+ 5i)

using
[P-(R=5)+(P—-Q) ]+ [(P+Q)-R—P-(R-5)]i

Note that there are only three matrix mulitiplies instead of
the usual four.

When applying this trick to Strassen—Winograd there are
two options:
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1. Decompose op(A) and op(B) into real and complex
parts first and then apply Strassen-Winograd to the three
products (as real matrix multiplies).

2. Apply Strassen—Winograd directly to the complex
matrices and decompose the small matrices that the classi-
cal matrix multiplication algorithm is ultimately used on.

We implemented both options and tried them on a number
of different computer architectures. For us, the first option
actually runs slightly faster (/2-3% ) than the second, but
it uses 2.5 times as much storage in the process. As a result,
we decided that the extra storage requirements did not
justify the trivial savings in time.

Note that by using the second option and a Level-3 BLAS
routine (e.g., dgemm or sgemm) that requires no extra
storage, the storage requirement given in {3) is still valid.
Neediess to say, —gemmw and _wines use the second option
m the complex cases.

Our routines do not attempt to re-order the matrices
op(A) and op(B) in order to achieve stride one vectors. We
note that the matrices may not always be in a part of
memory that allows writes or is quick to do so. Exampies
include read-only shared memory segments {common
when computing and input/output are overlapped in a
multitasking situation) or the matrices are actually on disk
{elther by choice or having been paged). Another obvious
advantage to not re-ordering the matrices is that op(A} and
op(B) can overlap without causing problems.

4. PARALLEL ENVIRONMENTS

There are two quite different parallel environments,
namely, inexpensive data access (e.g., shared memory
machines) and relatively expensive data access (e.g., dis-
tributed memory machines or clusters of workstations), The
latter seems to be what most parallel computer manufac-
turers are designing now and what many members of the
scientific community are using. In this section we are not
assuming that the algorithm designers have the right to
require that data reside in specific memory areas; we merely
assume that the data resides somewhere in the computing
environment’s memory banks.

Each level of Strassen-Winograd invoives 22 matrix
operations: 15 matrix additions and seven matrix multi-
plications. The blocked version of the classical method
requires 12 operations: four matrix additions and eight
matrix multiplications. Thus, Strassen—Winograd is inferior
to the classical method when the cost of matrix operand
loads and stores is high enough. Assuming matrix loads and
stores are quite expensive, we developed a hybrid algorithm:
classical among the parallel processors but Strassen—
Winograd within each processor.

Initially, a heuristic iteratively partitions the processors

and matrices 4, B, and C until each processor has a
submatrix multiplication to perform independently and in
parallel with the others. Assume there are p processors
which can be factored into the product of primes:

p= 1_[ I4E

i=1

Without loss of generality, we assume p,_, < p,, 2<i<n
Start with one set of p processors. In step 7, the heuristic par-
titions each set of processors into p, subsets and divides the
maximum of {M,, K,, N;} by p,. Also, the number of pro-
cessor partitions grows by a factor of p;, as does the number
of submatrix multiplications. Each submatrix multiplica-
tion decreases in complexity by an identical factor of p,.
After » steps, cach processor has an independent submatrix
multiplication.

For example, suppose p=12=2-2.3, C=4x B, and 4
and B are 3 x4 and 4 x 5 matrices, respectively. The parti-
tioning algorithm just described begins by assuming that all
12 processors are working on one problem, namely the
original matrix—matrix multiplication. The matrices are
partitioned initially as whole matrices:

bbbbb
aaad bbhbb ceeee
aaag | x bbbk |~ ceeee
aaaq bbbbb ceeee

First, the heuristic uses the first 2 in the prime factorization
of 12 so that two processor groups are formed {e.g., 1-6 and
7-12). These collaborate on two submatrix multiplications:

bbb | b
aaaa bbb | bb eee | ce
aaa | x ={ cec | ec
Zaaa bbb | bb ::cc e
bbb | bb

Second, the heuristic uses the second 2 in the prime
factorization of 12 so both processor groups are split in half
{(c.g., 1-3, 4-6, 7-9, and 10-12). These collaborate on four
submatrix multiplications:

bbb | bb
cce | ¢
aa | aa bbb | bb c
aa | aa |x =\ ccc | cc
aa | aa cee | cc

Third, the heuristic uses the last prime (3) in the prime
factorization of 12 to obtain 12 processor groups with one
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processor in each group. These collaborate on 12 submatrix
multiplications:

aa adq cee oc
aa aa | X =| ccce e
da aa cee cC

Finally, each processor performs its matrix multiplication
independent of the others. Hence, we took a tuple (M, K, N)
of (3,4,5) and produced a “partitioning” {.#, X", A"} of
(2, 3, 2) of blocks of 4, B, and C.

The user stores submatrices of 4 and B into the parallel
data base. In our example code, the Linda system [5] was
used. The computation continues with a call to the parallel
matrix multiplication routine, matmulp, with seven
parameters. These include the original sizes (M, X, N), the
partitioning (.#, ¥, .47}, and the number of processors (p)
to use.

Then marmulp creates 4 A" — 1 new parallel processes to
compute submatrices of C which are placed in the database.
All .# A" processes call a routine DoCij which is completely
independent of the other DoCif’s. Each DoCij process
creates 2 — 1 new processes to compute one term of the
respective matrix inner product. Then DoCif computes the
remaining term itsell. In total, p roughly equal, independent,
and parallel Strassen—Winograd processes execute.

Each parallel DoCjj uses _gemmw to compute its sub-
malrix term, sums the outputs of its child processes, outputs
its C submatrix to the database, and quits. The result, C,
remains in the distributed database.

5. NUMERICAL EXPERIMENTS

Simple experiments for _gemmw were run on a variety of
machines. The ones reported here are for muitiplying two

TABLE I1I
Machines Tested

Machine mindim  gemmw matmulp
Cray-2 128/768 X
Cray Y-MP 64 X ‘
Cray Y-MP C%0 128/256 X
DEC 3000 (OSF/!) 32 X
DEC 5000 (Ulirix) 32 X
IBM 3090 {VM, MVS, and ATX/ESA) 1927236 X
IBM ES9000 (VM, MVS, and AIX/ESA) 192/256 X
IBM RISC System/6000 192 X X
Sequent Symmetry 32 X X
Silicon Graphics Indigo 32 X
SUN Sparc 96 X X
Intel iPSC-2 32 X

TABLE IV

Memory Requirements for Strassen-Wincgrad Routines

f#Cor A, B B=0and 4, B
Implementation overlaps with C dw not overlap with C
gemmw 167N 0.67N7
Cray gemms 2.34N2 2.34N7
IBM ESSL gemms-real Not possible 140N2
IBM ESSL gemms-complex Not possible 17042

matrices 4 and B, both of which were initialized with
random (positive and negative) numbers, starting from a
known seed. The matrices were all large (1000-1826) and
represent a subset of the data points, which were

{1000 L N3, where N, =100,

and

N;=[(6N,_)/5], i>0
Each of the machines reported on here had at least 128Mb
of memory (and usually much more), including the
workstations.

Both Cray’s Scientific and Math [ibrary and [BM’s ESSL
have a Strassen—-Winograd subroutine. We used various
routines from each of these libraries to do the basic bilock

TABLE V

CPU Time for Simple Parallel 64 Bit Real Computation
on the Cray 2 and Y-MP C90

Number of Classical algorithm  Strassen SGEMMW 4
processors  Size SGEMM SGEMMS SGEMM

Cray 2 1058 1.82 1.43 242
4 CPUs 1269 2383 220 245
1522 4.06 3.48 6.25
1826 7.61 5.39 5.57
Y-MPC90 1058 0.66 0.54 0.69
4 CPUs 1269 1.14 0.89 0.99
4.167 ns 1522 1.96 1.47 1.53
clock 1826 EX:31 242 244
Y-MPC90 1058 0.33 0.28 0.30
8 CPUs 1269 0.57 0.45 0.47
4,167 ns 1522 0,98 0.75 0.75
clock® 1826 1.70 1.24 1.27
Y-MP C90 1058 0.17 0.17 0.18
16 CPUs 1269 0D.29 0.27 0.26
4,167 ns 1522 0.50 0.40 041
clock? 1826 0.86 0.68 0.69

@ mindim = 256 for § and 16 processors.
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7-]a
6-—4

Scaled 97
4 ®
Run .
3 .
Times o]
13°
0

on

T T T T 1 T T 1 T ]
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
N/1000

¢ 3GEMM, o SGEMMS, x SGEMMW

71b

;! :
Scaled -] .

4_
Run o

3 . *
Times g_J o %

$
g
0 T T T T 1 T T T 1
1011 121314151617 181920

N/1000

o CGEMM, o CGEMMS, x CGEMMW, « CGEMUL3

FIG. 3. Single processor Cray Y-MP C9(: (a) 64 bit real; (b) 64 bit complex.

matrix operations like addition or multiplication {classical
algorithm only). Since the Level-3 BLAS do not include
matrix addition or subtraction, some simpie routines are
supplied to do these essential operations.

The basic operations are accomplished using calls to
subroutines written in a variety of languages (Fortran or
assembly language normally). Which subroutines are
acinaily called and the correct order of the parameters is
defined through a set of macros in a header file. In addition,
the internal name mapping used by the C and Fortran
compilers {e.g, underscore additions or capitalization} is
included in the macro definitions. So, our code handles data
typing, library names, and compiler dependent name
mapping transparentiy.

The routines were tested on a number of machines,
including those in Table III. Note that for CPUs which can
do a number of things simultaneously, mindim is much
larger than on ones without this capability, On a four-

Scaled 97
Run o
Times g | )

113

4

L T T 1 T 1 T T T 1
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
N/1000

o SGEMM, o SGEMMS, » SGEMMW

processor Cray 2 used with micro-tasking, mindim =768
appears to be the crossover point on a system with time
sharing in effect. Note that on a standalone Cray 2,
mindim = 128 is good. On the IBM 30908, mindim = 192 is
good when either ESSL or NAG is used with our routine,
but mindim = 256 i1s good when the BLAS are used.

In computing (2), there are two cases of interest regarding
auxiliary storage. The first ts when §#0 and 4 and/or B
overlaps with C in memory. The second is the opposite
situation. For multiplying N x N matrices the memory
requirements for Strassen implementations are in Table V.
The IBM ESSL routine gemms assumes a =1, §=0in (2),
and no overlapping of 4, B, or C.

Figures 3-9 show a scaled set of run times for a repre-
sentative subset of the machines in Table III. The scaling
factors are in Table VIL

As can be readily seen, in the real data cases, _gemmw
is quite competitive with “hand tuned” matrix—matrix

T

6
Scaled 9

4
Run

3
Times o

1

0

1011 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
N/1000

o CGEMM, ¢ CGEMMS, « CGEMMW, « CGEMUL3

FIG. 4. Single processor Cray Y-MP: (a) 64 bit real; (b) 64 bit compiex.
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T7a

6_.
Scaled 57 o
4—
34 o
24 .

Run

Times

19 o0 *

0 T T T T T YT T )
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N/1000
o DGEMM, x DGEMMW

g b .
8
7
[}
Scaled 6
5 L ]
Run
4
[+]
Times 3 .
2 @ *
[ ]
19° *
N *
0r——T———T——T——7 T
1.01.11213141516 1.7 1.8 1.3 2.0
N/1000

o ZGEMM, » ZGEMMW, s ZGEMUL3

FIG. 5. DEC 3000 (OSF/1}): {a) 64 bit real; (b) 54 bit complex.

multiplication routines. It is much faster than the classical
method, as is expected from complexity theory.

In the complex data case, _gemmw is not quite as com-
petitive as in the real data case. It is still typically within
10% of the “hand tuned” Strassen—Winograd routines and
uses much less auxiliary storage, however. An interesting
aside is that the routine _gemul3 (see Section 3} is faster
than _gemm for all machines we have tried to data except
ones with DEC Alpha chips as the CPU. This anomaly is
due to the cache design on the current Alpha chips.

We noted in Section 3 that there are two different ways of
implementing complex matrix—-matrix multiplication. Both
Cray and IBM implemented their Strassen—Winograd
routines using more auxiliary storage than _gemmw. We
implemented _gemmw both ways. Qur two implementa-
tions never differed by more than 3% in running time on
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FIG. 6.

any machine, including both Cray and IBM mainframes.
We suspect that whatever programming tricks were used in
the Cray and IBM routines could be applied to _gemmw in
order to speed up the complex versions of _gemmw while
still using the theoretical minimum amount of auxiliary
storage.

Table V contains run times on a Cray 2 with four pro-
cessors and a Cray Y-MP C90 with 4, 8, and 16 processors.
Experience on the Cray-2 shows that mindim should be
increased as a function of the number of processors, As can
be seen from the table, SGEMMW + SGEMM did fairly
well up through eight processors. Beyond eight Y-MP C90
processors, larger problems or the algorithm from Section 4
should be used.

We also tested mammulp (sce Section4) on several
machines. We simulated slow access to data by using the
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TABLE V1

Elapsed Time for Parallel on a Sequent Symmetry
{Linda-C Tuple Space}

Using matmulp/DGEMMW  Using classical DGEMM only

Number of Efficient Efficient
processors Time Speedup percentage Time  Speedup percentage
1 543.28 1532.14
2 27791 19562 9781 774.02 1.9794 98.97
4 15949 34063  85.15 388.51 39436 98.59
8 86.84 62561 78.20 19578  7.8258 97.82
12 5593 97135 8094 13194 118123 96.76
16 49.55 109642  68.52 10202 150180 93.86
Note. 64 bit data, 500 x 500 matrices.

Linda system on an 18 processor Sequent computer.
Table VI contains elapsed times for 64 bit, rcal data using 1,
2, 4,8, 12, and 16 processors. The matrix A is 512 x 512 in
this case, which was the largest problem we could run on
this machine conveniently using Linda. While the classical
algorithin may have a very impressive parallel efficiency
(approaching 100% ), it is quite slow in comparison with
the hybrid algorithm. There is every reason to believe that
if larger problems are run, then the paralle] efficiency of the
hybrid method will also approach 100%.

6. CONCLUSIONS

In this paper, we addressed three issues. The first was the
design of a highly portable version of the Winograd variant
of Strassen’s matrix—matrix multiplication algorithm that
uses little auxiliary storage. The second was an efficient
implementation of classical matrix-matrix multiplication
for complex data. The third was parailel impiementation.

The senal code is sufficiently flexible so that only one
source code is needed for four data types: single and double
precision of either real or complex. It also is capable of
using the BLAS (the ones provided with LAPACK or a
proprietary version), Cray’s Scientific and Math Library,

TABLE VII

Scaling Factors in Scaled Run Times Figures

Machine Real data Complex data
Cray Y-MP CS0 222 8.89
Cray Y-MP 6.40 25.60
DEC 3000 205.49 359.92
IBM RS/6000-560 (ESSL) 23.09 88.37
IBM RS/6000-560 (BLAS) 2307 226.62°
IBM RS/6000-560 (NAG) 23.13 226.50°
IBM ES9000, Model 982 4.14 16.28

* Note that on machines with ESSL installed, the complex data scaling
factors are the same as the ESSL one.

IBM’s ESSL, NAG, or a library of the user’s choice. Tt also
handles different naming and calling conventions trans-
parently. Numerical experiments show that this is a very
good algerithm to use instead of the classical one for
problems of even a moderate size.

A Linda-C specific parallel implementation of a hybrid
algorithm is also described here. Logic and simple
numerical experiments show that this is better than a
straightforward parallel implementation of either the
classical or Strassen—Winograd algorithms when loads and
stores of submatrices are expensive. -

Our serial code strongly supports the argument that just
writing numerical libraries in Fortran and assembly
language is obsolete from a software engineering or human
productivity point of view, This is a case where C provides
a superior solution, particularly when combined with
computational kernels of mixed languages.

The portable Strassen—~Winograd solution presented here
competes well against hardware specific codes, especiaily on
larger problems which motivated this research in the first
place. When auxiliary storage is used as a measure, our code
is greatly superior to hardware specific codes, in some cases
by as much as a factor of four.
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